
HIGHER-ORDER ALEXANDER INVARIANTS OF PLANE ALGEBRAIC
CURVES

CONSTANCE LEIDY AND LAURENTIU MAXIM

Abstract. We define new higher-order Alexander modules An(C) and higher-order de-
grees δn(C) which are invariants of the algebraic planar curve C. These come from analyzing
the module structure of the homology of certain solvable covers of the complement of the
curve C. These invariants are in the spirit of those developed by T. Cochran in [2] and S.
Harvey in [8] and [9], which were used to study knots, 3-manifolds, and finitely presented
groups, respectively. We show that for curves in general position at infinity, the higher-
order degrees are finite. This provides new obstructions on the type of groups that can
arise as fundamental groups of complements to affine curves in general position at infinity.

1. Introduction

The study of singular plane curves is a subject going back to the work of Zariski, who
observed that the position of singularities has an influence on the topology of the curve,
and that this phenomena can be detected by the fundamental group of the complement.
However, the fundamental group of a plane curve complement is in general highly non-
commutative, and thus difficult to handle. It is therefore natural to look for invariants of
the fundamental group that capture information about the topology of the curve, such as
Alexander-type invariants associated to various covering spaces of the curve complement.
By analogy with the classical theory of knots and links in a 3-sphere, Libgober developed
invariants of the total linking number infinite cyclic cover in [10, 13, 14] and those of the
universal abelian cover in [17, 16]. In this paper, we consider certain solvable covers of the
curve complement, and their associated Alexander invariants.

Using techniques developed by T. Cochran, K. Orr, and P. Teichner in [3], S. Harvey
(in [8]) and T. Cochran (in [2]) defined higher-order Alexander modules and higher-order
degrees associated to 3-manifolds and knots, respectively. They used these invariants to
show that certain groups cannot be realized as the fundamental group of the complement
of a knot, or as the fundamental group of a 3-manifold. In the present paper, we use the
same type of invariants to study the complement of complex plane algebraic curves. Our
main result shows that under certain restrictions on the curve, these invariants are uniformly
bounded. This provides a new obstruction on the groups being realizable as the fundamental
group of the complement to a plane curve.

1.1. Survey of results. Let C be a reduced curve in C2, and consider U , the complement of
C in C2, with G = π1(U). The multivariable Alexander invariant, studied in [16, 17] (but see
also [6]), is defined by considering the universal abelian covering space of U corresponding
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to the map G → G/[G,G] ∼= Zs, where s is the number of irreducible components of the
curve. We continue this construction by taking iterated universal torsion-free abelian covers

of U corresponding to the maps G → G/G
(n+1)
r ≡ Γn, where G

(n)
r is the nth-term in the

rational derived series of G (defined in §2 below). We define the higher-order Alexander
modules of the plane curve complement to be AZ

n(C) = H1(U ; ZΓn), and note that AZ
0 (C)

is just the (integral) universal abelian Alexander module of C. The following is a corollary
to Theorem 4.1, and provides an analogue to similar results from the infinite cyclic and
universal abelian cases:

Corollary 4.2. If C is a reduced curve in C2, that is in general position at infinity, AZ
n(C)

is a torsion ZΓn-module.

Furthermore, we consider some skew Laurent polynomial rings Kn[t
±1], which are obtained

from ZΓn by inverting the non-zero elements of a particular subring. The advantage of using
Kn[t

±1] coefficients instead of ZΓn coefficients is that the former is a principal ideal domain.
We define the higher-order degree of C to be δn(C) = rkKnH1(U ; Kn[t

±1]).
Even though, in principle, the higher-order degrees may be computed by means of Fox

free calculus (cf. [8], §6), the calculations are tedious as they depend on a presentation of
the fundamental group of the curve complement. However, in the case that the curve is in
general position at infinity, we find a uniform upper bound on the higher-order degrees. In
particular, we prove the following result:

Theorem 4.1. Suppose C is a degree d curve in C2, such that its projective completion C̄
is transverse to the line at infinity. If C has singularities ck, 1 ≤ k ≤ l, then

(1.1) δn(C) ≤ Σl
k=1 (µ(C, ck) + 2nk) + 2g + d− l,

where µ(C, ck) is the Milnor number associated to the singularity germ at ck, nk is the
number of branches through the singularity ck, and g is the genus of the normalized curve.

As a direct corollary of the proof of Theorem 4.1, we also find a bound on the higher-order
degrees of the curve in terms of “local” degrees, δ̄kn, for each singularity ck of C. The latter
were defined and studied by Harvey [8].

Theorem 4.5. If C satisfies the assumptions of the previous theorem, then

δn(C) ≤ Σl
k=1(δ̄

k
n + 2nk) + 2g + d,

where δ̄kn = δ̄n(Xk) is Harvey’s invariant of the link complement Xk associated to the singu-
larity ck.

We view Theorem 4.5 as an analogue of the divisibility properties for the infinite cyclic
Alexander polynomial of the complement as shown in [13].

For irreducible curves, regardless of the position of the line at infinity, the higher-order
degrees are finite and thus the higher-order Alexander modules are torsion. However, if the
line at infinity is not transverse to the irreducible curve C, then the upper bounds mentioned
above will also include the contribution of the singular points at infinity (similar to [12],
Theorem 4.3).

To complete the analogy with the case of Alexander polynomials of the infinite cyclic
cover of the complement, we also provide an upper bound on δn(C) by the corresponding
higher-order Alexander invariant of the link at infinity (see Theorem 4.7). For a curve of
degree d, in general position at infinity, this is an uniform bound equal to d(d− 2).
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We conclude the paper with sample computations of higher-order degrees of plane curves,
also indicating some connections with the infinite cyclic and universal abelian invariants of
the curve. In passing we note that the higher-order degrees δn, at any level n, are sensitive
to the position of singular points (see Example 5.6). This fact alone gives an incentive to
look for examples of Zariski pairs that are distinguished by some δk, but not by any other
Alexander-type invariants. This will make the subject of future work by these authors.

1.2. Connections with other work. We end the introduction with presenting further
motivation for this work and connections with previous studies on invariants of the funda-
mental group of a plane curve complement.

Although in geometric problems the fundamental group of complements to projective
curves plays a central role, by switching to the affine setting (i.e. by removing also a generic
line) no essential information is lost. Indeed, if C̄ is the projective completion of C and H
is the line at infinity, the two groups are related by the central extension

0 → Z → π1(CP2 − (C̄ ∪H)) → π1(CP2 − C̄) → 0.

Moreover, as Oka proved (e.g., see [23], Lemma 2), the commutators of the two fundamental
groups (in the affine and resp. projective setting) coincide, therefore either of the two groups
can be used for computing the rational derived series of the fundamental group of the affine
complement.

Our finiteness result on the higher-order degrees provides also new obstructions on the
type of groups that can arise as fundamental groups of complements to affine hypersurfaces
in general position at infinity. Indeed, by a Zariski-Lefschetz theorem, possible fundamental
groups of complements to hypersurfaces in Cn are precisely the fundamental groups of affine
plane curve complements. Note that for a general group, one does not expect the higher-
order degrees δn to be finite. For instance, for a free group with at least 2 generators the
free ranks rn are positive (cf. [8], Example 8.2) therefore δn is infinite.

Similar obstructions on fundamental groups of complements to affine plane curves were
previously obtained by Libgober and others (for a nice discussion on this topic in relation
with a question of Serre, the reader is advised to consult [15]). For example, from the study
of the total linking number infinite cyclic cover of the complement [10, 13], it follows that
the Alexander polynomial of the (affine) curve is cyclotomic. More precisely, for a curve
in general position at infinity this polynomial divides the product of the local Alexander
polynomials at the singular points, and its zeros are roots of unity of order d = deg(C̄). This
result already obstructs many knot groups from being realizable as fundamental groups of
complements to affine plane curves. More obstructions were derived by Libgober [16, 17]
and Arapura [1] from the study of the universal abelian cover of the affine complement. We
only mention here the powerful result of Arapura which states that the support (hence all
characteristic varieties) of the fundamental group of a plane curve complement is a union
of subtori of the character torus, possibly translated by unitary characters.

Our obstructions come from analyzing the solvable coverings associated to the rational
derived series of the fundamental group of the affine complement. It would be interesting at
this point to understand how the higher-order degrees are related to (or influenced by) the
invariants of the infinite cyclic or universal abelian covers of the complement. Proposition
5.1 already provides such a relation. In connection with the universal abelian cover, Libgober
proved that if the codimension (in the character torus) of support of the universal abelian
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Alexander module is greater than 1, then δ0(C) = 0. Of course, this assumption can only
be satisfied if the curve has at least 2 irreducible components, and it remains to understand
for what type of curves such a condition holds.

2. Rational derived series of a group; PTFA groups

In this section, we review the definitions and basic constructions that we will need from
[8] and [2]. More details can be found in these sources.

We begin by recalling the definition of the rational derived series {G(i)
r } associated to any

group G.

Definition 2.1. Let G
(0)
r = G. For n ≥ 1, define the nth term of the rational derived series

of G by:

G(n)
r = {g ∈ G(n−1)

r |gk ∈ [G(n−1)
r , G(n−1)

r ], for some k ∈ Z− {0}}.

We denote by Γn the quotient G/G
(n+1)
r . Since G

(n)
r is a normal subgroup of G

(i)
r for

0 ≤ i ≤ n ([8], Lemma 3.2), it follows that Γn is a group.
The use of rational derived series, as opposed to the usual derived series {G(n)}, is nec-

essary to avoid zero divisors in the group ring ZΓn. However, if G is a knot group or a free
group, the rational derived series and the derived series coincide ([8], p. 902). If G is a finite

group then G
(n)
r = G, hence Γn = {1} for all n ≥ 0.

The rational derived series is defined in such a way that the successive quotientsG
(n)
r /G

(n+1)
r

are Z-torsion-free and abelian. In fact ([8], Lemma 3.5):

(2.1) G(n)
r /G(n+1)

r
∼=

(
G(n)
r /[G(n)

r , G(n)
r ]

)
/{Z− torsion}.

If G = π1(X) this says that G
(n)
r /G

(n+1)
r

∼= H1(XΓn−1)/{Z − torsion}, where XΓn−1 is the

regular Γn−1-cover of X. In particular, G/G
(1)
r = G

(0)
r /G

(1)
r

∼= H1(X)/{Z − torsion} ∼=
Zβ1(X).

Remark 2.2. If G is the fundamental group of a link complement in S3 or that of a plane

curve complement, then G
(1)
r = G(1) (since there is no torsion in the first homology of the

complement).

Definition 2.3. A group Γ is poly-torsion-free-abelian (PTFA) if it admits a normal series
of subgroups {1} = G0 /G1 / · · · /Gn = Γ such that each of the successive quotients Gi+1/Gi

is torsion-free abelian.

Remark 2.4. We collect here the following facts:
(1) Any subgroup of a PTFA group is a PTFA group.
(2) If Γ is PTFA, then ZΓ is a right (and left) Ore domain (i.e., has no zero divisors and

ZΓ− {0} is a right divisor set). Thus it embeds in its classical right ring of quotients K, a
skew field ([2], Proposition 3.2).

(3) If R is an Ore domain and S is a right divisor set, then RS−1 is flat as a left R-module.
In particular, K is a flat ZΓ-module ([24], Proposition II.3.5).

(4) Every module over K is a free module ([24], Proposition I.2.3). Such modules have a
well-defined rank rkK which is additive on short exact sequences.
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If A is a module over an Ore domain R, then the rank of A is defined as rk(A) =
rkK(A⊗R K), where K is the quotient field of R. In particular, A is a torsion R-module if
and only if A⊗R K = 0.

Proposition 2.5. ([8], Corollary 3.6) For any group G, Γn = G/G
(n+1)
r is PTFA. Thus

ZΓn embeds in its classical right ring of quotients, Kn.

SupposeX is a topological space that has the homotopy type of a connected CW-complex.
Let Γ be any group and φ : π1(X) → Γ be a homomorphism. We denote by XΓ the regular
Γ-cover of X associated to φ. If φ is surjective, this is the covering space associated to kerφ.
(For details about the case where φ is not surjective, we refer the reader to §3 of [2].) Let
C(XΓ; Z) be the ZΓ-free cellular chain complex for XΓ obtained by lifting the cell structure
of X. If M is a ZΓ-bimodule, then define:

H∗(X;M) = H∗(C(XΓ; Z)⊗ZΓ M)

as a right ZΓ-module.

Proposition 2.6. ([3], Proposition 2.9) Let X be a connected CW-complex and Γ a PTFA
group. If φ : π1(X) → Γ is a non-trivial coefficient system, then H0(X; ZΓ) is a torsion
ZΓ-module.

Proposition 2.7. ([2], Proposition 3.10) Let X be a connected CW-complex and Γ be a
PTFA group. Suppose π1(X) is finitely generated and φ : π1(X) → Γ is a non-trivial
coefficient system. Then rk (H1(X; ZΓ)) ≤ β1(X)−1, where β1(X) is the first Betti number
of X. In particular, if β1(X) = 1 then H1(X; ZΓ) is a torsion ZΓ-module.

3. Definitions of new invariants

Let C be a reduced curve in C2, defined by the equation: f = f1 · · · fs = 0, where fi are
the irreducible factors of f , and let Ci = {fi = 0} denote the irreducible components of
C. Embed C2 in CP2 by adding the plane at infinity, H, and let C̄ be the projective curve
in CP2 defined by the homogenization fh of f . We let C̄i = {fhi = 0}, i = 1, · · · , s, be
the corresponding irreducible components of C̄. Let U be the complement CP2 − (C̄ ∪H).
(Alternatively, U may be regarded as the complement of the curve C in the affine space
C2.) Then H1(U) is free abelian generated by the meridian loops γi about the non-singular
part of each irreducible component C̄i, for i = 1, · · · , s (cf. [4], (4.1.3), (4.1.4)). If γ∞
denotes the meridian about the line at infinity, then the equation γ∞ +

∑s
i=1 diγi = 0 with

di = deg(fhi ), holds in H1(U).

3.1. Higher-order Alexander modules. We let G = π1(U), Γn = G/G
(n+1)
r , and Kn be

the classical right ring of quotients of ZΓn.

Definition 3.1. We define the higher-order Alexander modules of the plane curve to be:

AZ
n(C) = H1(U ; ZΓn) = H1(UΓn ; Z)

where UΓn is the covering of U corresponding to the subgroup G
(n+1)
r . That is, AZ

n(C) =

G
(n+1)
r /[G

(n+1)
r , G

(n+1)
r ] as a right ZΓn-module.

Definition 3.2. The nth order rank of (the complement of) C is:

rn(C) = rkAZ
n(C).
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Remark 3.3. (1) Note that AZ
0 (C) = G

(1)
r /[G

(1)
r , G

(1)
r ] = G′/G′′, by Remark 2.2. This is

just the universal abelian invariant of the complement.

(2) AZ
n(C)/{Z− torsion} = G

(n+1)
r /G

(n+2)
r .

(3) If C is irreducible, then β1(U) = 1. By Proposition 2.7, it follows that AZ
n(C) is a

torsion module.

In Corollary 4.2, we show that under the assumption of transversality at infinity, the
module AZ

n(C) is a torsion ZΓn-module. Therefore, rn(C) = 0.
Since U is a 2-dimensional affine variety, it has the homotopy type of a 2-dimensional CW-

complex. Thus the modules Hk(U ; ZΓn) are trivial for k > 2 and H2(U ; ZΓn) is a torsion-free
ZΓn-module. Moreover, we will show that in our setting, the rank of H2(U ; ZΓn) is equal
to the Euler characteristic of the complement, U .

Remark 3.4. Assume that the universal abelian Alexander module of the complement is
trivial, i.e. AZ

0 (C) = 0. (Note that this is the case if G is abelian or finite.) Then all
higher-order Alexander modules AZ

n(C) = 0, for n ≥ 1, are also trivial. Indeed, by Remark

2.2, G′ = G
(1)
r and AZ

0 (C) = G′/G′′. It follows that G(n) = G′ = G
(1)
r , for all n ≥ 1. From

the definition of the rational derived series, it is now easy to see that G
(n)
r = G′ for all n ≥ 1.

Therefore AZ
n(C) ∼= G

(n+1)
r /[G

(n+1)
r , G

(n+1)
r ] ∼= G′/G′′ = 0, for all n ≥ 0.

Example 3.5. (1) If C is a non-singular curve in general position at infinity, then π1(U) ∼= Z
(cf. [12]), hence abelian. By the above remark, it follows that AZ

n(C) = 0, for all n ≥ 0.
(2) Suppose U is the complement in C2 of a union of two lines. Then π1(U) is Z2. Hence
AZ
n(C) = 0 for all n ≥ 0.

(3) If C̄ is a reduced curve having only nodes as its singularities (i.e., locally at each singular
point, C̄ looks like x2 − y2 = 0), then it is known that π1(CP2 − C̄) is abelian (e.g., see
[23]), thus has trivial commutator subgroup. Under the assumption that the line at infinity
is generic, this implies that the commutator subgroup of π1(U) is also trivial ([23], Lemma
2), so π1(U) is abelian. Now from Remark 3.4 it follows that AZ

n(C) = 0, for all n ≥ 0.

3.2. Localized higher-order Alexander modules. In this section we define some skew
Laurent polynomial rings Kn[t

±1], which are obtained from ZΓn by inverting the non-zero
elements of a particular subring described below. This construction is used in [8] and [2]
and is described in algebraic generality in [9]. We refer to those sources for the background
definitions.

Recall our notations: G = π1(U), Γn = G/G
(n+1)
r and Kn is the classical right ring of

quotients of ZΓn. Let ψ ∈ H1(G; Z) ∼= HomZ(G,Z) be the primitive class representing the

linking number homomorphism G
ψ→ Z, α 7→ lk(α,C). Since the commutator subgroup of

G is in the kernel of ψ, it follows that ψ induces a well-defined epimorphism ψ̄ : Γn → Z.
Let Γ̄n be the kernel of ψ̄. Since Γ̄n is a subgroup of Γn, by Remark 2.4, Γ̄n is a PTFA
group. Thus ZΓ̄n is an Ore domain and Sn = ZΓ̄n − {0} is a right divisor set of ZΓ̄n. Let
Kn = (ZΓ̄n)S

−1
n be the right ring of quotients of ZΓ̄n, and set Rn = (ZΓn)S

−1
n .

If we choose a t ∈ Γn such that ψ̄(t) = 1, this yields a splitting φ : Z → Γn of ψ̄. As in

Proposition 4.5 of [8], the embedding ZΓ̄n ↪→ Kn extends to an isomorphism Rn

∼=→ Kn[t
±1].

(However this isomorphism depends on the choice of splitting!) It follows that Rn is a non-
commutative principal left and right ideal domain, since this is known to be true for any
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skew Laurent polynomial rings with coefficients in a skew field ([2], Proposition 4.5). Also
note that by Remark 2.4, Rn is a flat left ZΓn-module.

Definition 3.6. The nth-order localized Alexander module of the curve C is defined to be
An(C) = H1(U ;Rn), viewed as a right Rn-module. If we choose a splitting φ to identify Rn

with Kn[t
±1], we define Aφ

n(C) = H1(U ; Kn[t
±1]).

Definition 3.7. The nth-order degree of C is defined to be:

δn(C) = rkKnAn(C)

Remark 3.8. For any choice of φ, rkKnAn(C) = rkKnAφ
n(C). So although the module

Aφ
n(C) depends on the splitting, the rank of the module does not.

The degrees δn(C) are integral invariants of the fundamental group G of the complement.
Indeed, we have (cf. [9], §1):

(3.1) δn(C) = rkKn

(
G(n+1)
r /[G(n+1)

r , G(n+1)
r ]⊗ZΓ̄n

Kn

)
Furthermore, for any choice of splitting φ, since Kn[t

±1] is a principal ideal domain, there
exist some nonzero pi(t) ∈ Kn[t

±1], i = 1, · · · ,m, such that:

Aφ
n(C) ∼=

(
⊕m
i=1

Kn[t
±1]

pi(t)Kn[t±1]

)
⊕Kn[t

±1]rn(C)

Therefore, δn(C) is finite if and only if one of the equivalent statements is true:

(1) rn(C) = rkKnH1(U ;Kn) = 0.
(2) An(C) is a torsion Rn-module.
(3) For any φ, Aφ

n(C) is a torsion Kn[t
±1]-module.

(4) AZ
n(C) is a torsion ZΓn-module.

If this is the case, then δn(C) is the sum of the degrees of the polynomials pi(t).

Remark 3.9. It is interesting to note that if C is irreducible, then δ0(C) is the degree of the
Alexander polynomial of C. (The latter was defined and studied by Libgober in a sequence
of papers [10, 11, 12, 13, 14].) Indeed, this follows directly from the above definition or from
(3.1), since in the irreducible case we have that Γ̄0

∼= 0, therefore K0
∼= Q.

The invariant δn(C) is difficult to calculate, in general. However, the special case of
weighted homogeneous affine curves is well understood:

Proposition 3.10. Suppose C is defined by a weighted homogeneous polynomial f(x, y) = 0
in C2, and assume that either n > 0 or β1(U) > 1. Then we have:

(3.2) δn(C) = µ(C, 0)− 1,

where µ(C, 0) is the Milnor number associated to the singularity germ at the origin. If
β1(U) = 1, then δ0(C) = µ(C, 0).

Proof. The key observation here is the existence of a global Milnor fibration (see for example
[4], (3.1.12)):

F = {f = 1} ↪→ U = C2 − C
f→ C∗,

and the fact that F is homotopy equivalent to the infinite cyclic cover of U corresponding to
the kernel of the total linking number homomorphism ψ. The Γn-cover of U factors through
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the infinite cyclic cover corresponding to ψ, which is homotopy equivalent to F . It follows
that there is an isomorphism of Kn-modules:

H∗(U ;Rn) ∼= H∗(F ; Kn).

In particular,
δn(C) = rkKnH1(F ; Kn).

Since F has the homotopy type of a 1-dimensional CW complex, H2(F ; Kn) = 0. Moreover,
if either n > 0 or β1(U) > 1, the coefficient system π1(F ) → Γ̄n is non-trivial. Hence, by
Proposition 2.6, H0(F ; Kn) = 0. It follows, in this case, that

δn(C) = −χ(F ) = µ(C, 0)− 1.

On the other hand, if β1(U) = 1, then rkK0H0(F ; K0) = rkQH0(F ; Q) = 1. Hence, if
β1(U) = 1, then δ0(C) = 1− χ(F ) = µ(C, 0).

�

Example 3.11. Since f(x) = x3 − y2 is a weighted homogeneous polynomial, if C is the
curve defined by f = 0, it follows from Proposition 3.10, that δ0(C) = 2 and δn(C) = 1 for
n > 0.

Remark 3.12. Due to the existence of Milnor fibrations, we note that formula (3.2) holds for
the case of any algebraic link, by replacing U by the link complement and δn(C) by Harvey’s
invariant of the algebraic link. For a more general discussion on fibered 3-manifolds, see [8],
Proposition 8.4, 8.5.

Remark 3.13. As noted in [8], §6 and §8, the higher-order Alexander invariants rn(C)
and δn(C) can be computed from a presentation of the fundamental group of the curve
complement, by means of Fox free calculus.

4. Upper bounds on the higher order degree of a curve complement

In this section, we find upper bounds for δn(C). In Theorem 4.1, we find an upper bound
in terms of the Milnor number of each singularity. In Theorem 4.5, we express this bound
in terms of the Harvey’s invariants, δ̄n, associated to each of the singular points of C. This
result is analogous to the divisibility properties for the infinite cyclic Alexander polynomial
of the complement (e.g., see [11, 12, 13, 19]). As a corollary to these theorems, we have that,
if C is a curve in general position at infinity, then δn(C) is finite, and therefore An(C) is a
torsion ZΓn-module. We also give an upper bound for δn(C) in terms of the higher-order
degrees of the link at infinity.

Theorem 4.1. Suppose C is a degree d curve in C2 such that its projective completion C̄
is transverse to the line at infinity H. If C has singularities ck, 1 ≤ k ≤ l, then

(4.1) δn(C) ≤ Σl
k=1 (µ(C, ck) + 2nk) + 2g + d− l,

where µ(C, ck) is the Milnor number associated to the singularity germ at ck, nk is the
number of branches through the singularity ck, and g is the genus of the normalized curve.

Before proving Theorem 4.1, we state an immediate corollary.

Corollary 4.2. If C is a plane curve in general position at infinity, then δn(C) <∞, i.e.,
AZ
n(C) is a torsion ZΓn-module.
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Remark 4.3. Note that the upper bound in (4.1) is independent of n.

Remark 4.4. If C is an irreducible curve, then independently of the position of the line
at infinity, we have that β1(U) = 1. By Proposition 2.7, it follows that AZ

n(C) is a torsion
module. However, if the curve C is not in general position at infinity, then the upper bound
on δn(C) also includes the contribution of the ‘singularities at infinity’ (similar to Theorem
4.3 of [12]).

Proof. We first reduce the problem to the study of the boundary, X, of a regular neighbor-
hood of C in C2. In order to do this, let N(C̄) be a regular neighborhood of C̄ inside CP2

and note that, due to the transversality assumption, the complement N(C̄)−(C̄∪H) can be
identified with N(C)−C, where N(C) is a regular neighborhood of C in C2. But N(C)−C
retracts by deformation on X = ∂N(C). Now by the Lefschetz hyperplane section theorem
([4], page 25), it follows that the inclusion map induces a group epimorphism

π1(X) � π1(U)

(the argument used here is similar to the one used in the proof of Theorem 4.3 of [12]).
It follows that π1(XΓn) � π1(UΓn). Hence, H1(X; ZΓn) � H1(U ; ZΓn). Since Rn is a flat
ZΓn-module, there is an Rn-module epimorphism H1(X;Rn) � H1(U ;Rn). Therefore, we
have:

δn(C) = rkKnH1(U ;Rn) ≤ rkKnH1(X;Rn).

Hence, it is sufficient to bound above the right-hand side of the above inequality. This will
follow by a Mayer-Vietoris sequence argument.

Let F be the (abstract) surface obtained from C by removing disks D1∪· · ·∪Dnk
around

each singular point ck of C. Let N = F × S1. The boundary of N is a union of disjoint
tori T k1 ∪ · · · ∪ T knk

for k = 1, · · · , l, where l is the number of singular points of C. For
each singular point ck of C we let (S3

k , Lk) be the link pair of ck, and denote by Xk the link
exterior, S3

k−Lk. Then X is obtained from N by gluing the link exteriors Xk along the tori
T ki for i = 1, · · · , nk:

X = N ∪tiTk
i

(tlk=1Xk).

The gluing map sends each longitude of Lk to the restriction of a section in N , and each
meridian to a fiber of N .

We consider the Mayer-Vietoris sequence in homology associated to the above cover of X
and with coefficients in Rn:

· · · → ⊕k,iH1(T
k
i ;Rn)

Ψ→ H1(N ;Rn)⊕
(
⊕l
k=1H1(Xk;Rn)

)
→ H1(X;Rn)

→ ⊕k,iH0(T
k
i ;Rn) → H0(N ;Rn)⊕

(
⊕l
k=1H0(Xk;Rn)

)
→ H0(X;Rn) → 0

From Remark 2.4, we have:

rkKnH1(X;Rn) = rkKnH1(N ;Rn) + Σl
k=1rkKnH1(Xk;Rn)− Σk,irkKnH1(T

k
i ;Rn)

+rkKn ker(Ψ) + Σk,irkKnH0(T
k
i ;Rn)− rkKnH0(N ;Rn)(4.2)

−Σl
k=1rkKnH0(Xk;Rn) + rkKnH0(X;Rn).

Recall that, for each singular point ck of C, the coefficient system Rn on Xk is induced
by the following composition of maps:

Zπ1(Xk) → Zπ1(X) → Zπ1(U) → ZΓn → Rn.
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Since each Xk fibers over S1 with Milnor fiber Fk, the Γn-cover of Xk factors through the
infinite cyclic cover of Xk which is homeomorphic to Fk×R. Therefore we have the following
isomorphisms of Kn-modules:

H∗(Xk;Rn) ∼= H∗(Fk; Kn).

Since Fk has the homotopy type of a wedge of circles, H2(Fk; Kn) = 0. Therefore,

χ(Fk) = −rkKnH1(Fk; Kn) + rkKnH0(Fk; Kn) = −rkKnH1(Xk;Rn) + rkKnH0(Xk;Rn).

Similar, since N = F × S1, the Γn-cover of N factors through the infinite cyclic cover of N
which is homeomorphic to F × R. So if Fn denotes the corresponding Γn-cover of F , then
Fn is a non-compact surface and we have H2(F ; Kn) = 0. Therefore:

χ(F ) = −rkKnH1(F ; Kn) + rkKnH0(F ; Kn) = −rkKnH1(N ;Rn) + rkKnH0(N ;Rn).

Finally, for each k and i, we have:

0 = χ(S1) = −rkKnH1(S
1; Kn) + rkKnH0(S

1; Kn) = −rkKnH1(T
k
i ;Rn) + rkKnH0(T

k
i ;Rn).

Now we can rewrite equation (4.2) as follows:

(4.3) rkKnH1(X;Rn) = −Σl
k=1χ(Fk)− χ(F ) + rkKn ker(Ψ) + rkKnH0(X;Rn).

Since π1(X) � π(U) � Γn is an epimorphism, it follows that the Γn-cover of X is
connected, thus yielding that rkKnH0(X;Rn) = 1.

Since Ψ : ⊕k,iH1(T
k
i ;Rn) → H1(N ;Rn), it follows that rkKn ker(Ψ) ≤ Σk,irkKnH1(T

k
i ;Rn).

For each k and i, we have that:

rkKnH1(T
k
i ;Rn) = rkKnH0(T

k
i ;Rn) = rkKnH0(S

1; Kn) ≤ 1,

since S1 is connected. Therefore, rkKn ker(Ψ) is less than or equal to the number of tori,
which is Σl

k=1nk where nk is the number of branches through the singularity ck. From
equation (4.3) we have the following:

(4.4) rkKnH1(X;Rn) ≤ Σl
k=1(−χ(Fk) + nk)− χ(F ) + 1.

Furthermore, −χ(Fk) = µ(C, ck) − 1 and −χ(F ) ≤ 2g +
∑

k nk + d − 1, where g is the
genus of the normalized curve and d is the degree of the curve, i.e. the number of ‘punctures
at infinity’. It follows that:

δn(C) ≤ rkKnH1(X;Rn) ≤ Σl
k=1 (µ(C, ck) + 2nk) + 2g + d− l.

�

As a corollary of the proof of Theorem 4.1, we obtain the following relation between the
higher-order degrees of C and the ”local” degrees at singular points:

Theorem 4.5. Suppose C is a degree d curve in C2, such that its projective completion C̄
is transverse to the line at infinity, H. If C has singularities ck, 1 ≤ k ≤ l, then

δn(C) ≤ Σl
k=1(δ̄

k
n + 2nk) + 2g + d,

where δ̄kn = δ̄n(Xk) is Harvey’s invariant of the link complement Xk associated to the singu-
larity ck, nk is the number of branches through the singularity ck, and g is the genus of the
normalized curve.
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Proof. We have equation (4.4) in the above proof:

rkKnH1(X;Rn) ≤ Σl
k=1(−χ(Fk) + nk)− χ(F ) + 1.

Furthermore, −χ(F ) ≤ 2g +
∑

k nk + d− 1. From Proposition 8.4 of [8], we have

δ̄kn = δ̄n(Xk) =

{
−χ(Fk) if n 6= 0 or β1(Xk) 6= 1,

1− χ(Fk) if n = 0 and β1(Xk) = 1.

In particular, −χ(Fk) ≤ δ̄kn, which proves the theorem. �

We can also give a topological estimate for the rank of the torsion-free ZΓn-module
H2(U ; ZΓn):

Corollary 4.6. If C is a plane curve in general position at infinity, the rank of the torsion-
free ZΓn-module H2(U ; ZΓn) is equal to the Euler characteristic χ(U) of the curve comple-
ment.

Proof. Let C be the equivariant complex

0 → C2 → C1 → C1 → 0

of free ZΓn-modules, obtained by lifting the cell structure of U to UΓn , the Γn-covering of
U . Then χ(C) = χ(U). On the other hand,

χ(C) =
2∑
i=0

(−1)irkKnHi(C ⊗ZΓn Kn) =
2∑
i=0

(−1)irkHi(C).

Therefore, by Proposition 2.6 and Corollary 4.2, it follows that χ(C) = rkH2(U ; ZΓn) and
the claim follows. �

We end this section by relating the higher-order degrees of a curve C to the higher-order
degrees of its link at infinity. We prove the following theorem, similar in flavor to results on
the infinite cyclic and universal abelian Alexander invariants (see [11, 12, 13, 6, 19]):

Theorem 4.7. Let C be an affine plane curve, and let S3
∞ be a sphere in C2 of a sufficiently

large radius (that is, the boundary of a small tubular neighborhood in CP2 of the hyperplane
H at infinity). Denote by C∞ = S3

∞ ∩ C the link of C at infinity, and let X∞ be its
complement S3

∞ − C∞, with G∞ := π1(X∞).
We define δ∞n to be the Kn-rank of H1(X∞;Rn), where the coefficient system is induced

by the map ZG∞ → ZG→ ZΓn → Rn. Then:

(4.5) δn(C) ≤ δ∞n .

Proof. We note that there is a group epimorphism G∞ � G. Indeed, X∞ is homotopy
equivalent to N(H)− (C̄ ∪H), where N(H) is a tubular neighborhood of H in CP2 whose
boundary is S3

∞. If L is a generic line in CP2, which can be assumed to be contained in
N(H), then by the Lefschetz theorem, it follows that the composition

π1(L− L ∩ (C̄ ∪H)) → π1(N(H)− (C̄ ∪H)) → π1(CP2 − (C̄ ∪H))

is surjective, thus proving our claim (this is the same argument as the one used in [12],
Theorem 4.5).
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It follows that there is a ZΓn-module epimorphism

H1(X∞; ZΓn) � H1(U ; ZΓn).

Since Rn is a flat ZΓn-module, we also get a Rn-module epimorphism:

H1(X∞;Rn) � H1(U ;Rn).

This proves the inequality (4.5).
�

For a curve in general position at infinity, this yields a uniform upper bound on the
higher-order degrees of the curve, which is independent of the local type of singularities and
the number of singular points of the curve:

Corollary 4.8. If C is a curve of degree d, in general position at infinity, then:

(4.6) δn(C) ≤ d(d− 2) , for all n.

Proof. The claim follows by noting that if C is transverse to the line at infinity, then C∞
is the Hopf link on d components (i.e., the union of d fibers of the Hopf fibration), thus
an algebraic link. By the argument used in the proof of Proposition 3.10, it follows that
δ∞n = µ∞ − 1, where µ∞ is the Milnor number associated to the link at infinity. On the
other hand, µ∞ is the degree of the Alexander polynomial of the link at infinity, so it is
equal to d(d− 2) + 1 (cf. [13]). The inequality (4.6) follows now from Theorem 4.7.

�

5. Examples

In this section, we calculate the higher-order degrees for some of the classical examples
of irreducible curves, including general cuspidal curves, Zariski’s sextics with 6 cusps, Oka’s
curves, and branched loci of generic projections.

We begin with the following:

Proposition 5.1. Let C ⊂ C2 be an irreducible affine curve. Let G = π1(C2 − C), and
denote by ∆C(t) the Alexander polynomial of the curve complement. If ∆C(t) = 1, then
δn(C) = 0 for all n. Moreover, in this case, AZ

n(C) ∼= AZ
0 (C) as Z[G/G′]-modules, for all n.

Proof. As C is an irreducible affine curve, we have G/G′ ∼= Z. Hence G′ ∼= G′
r. The Alexan-

der polynomial ∆C(t) is the order of the infinite cyclic (and universal abelian) Alexander
module of the complement, that is G′/G′′⊗Q, regarded as a Q[Z]-module under the action
of the covering transformations group G/G′ (cf. [10, 13, 14]). Since C is irreducible, the
infinite cyclic Alexander module is a torsion Q[t, t−1]-module, regardless of the position of
the line at infinity (cf. [10]). In this setting, ∆C(t) can be normalized so that ∆C(1) = 1.

The triviality of the Alexander polynomial means that the universal abelian module
G′/G′′ ⊗Q is trivial, i.e. G′/G′′ is a torsion abelian group. By (2.1), we obtain:

G′
r/G

′′
r
∼= (G′

r/[G
′
r, G

′
r])/{Z− torsion} ∼= (G′/G′′)/{Z− torsion} ∼= 0.

Hence G′′
r
∼= G′

r = G′. It follows by induction that G
(n)
r = G′, for all n > 0. Therefore, for

any n,

AZ
n(C) = G(n+1)

r /[G(n+1)
r , G(n+1)

r ] ∼= G′/G′′ = AZ
0 (C).



HIGHER-ORDER ALEXANDER INVARIANTS OF PLANE ALGEBRAIC CURVES 13

Now recall that the higher-order degrees of C may be defined by (3.1):

δn(C) = dimKn

(
G(n+1)
r /[G(n+1)

r , G(n+1)
r ]⊗ZΓ̄n

Kn

)
,

where Γ̄n is the kernel of Γn
ψ̄→ Z = G/G′. The map ψ̄ is induced by the total linking

number homomorphism, which in our setting is just the abelianization map G→ G/G′ = Z.

It follows that for all n we have: Γn = G/G
(n+1)
r = G/G′, Γ̄n = G′/G

(n+1)
r

∼= 0, and Kn
∼= Q.

Therefore, for all n,
δn(C) = dimQ (G′/G′′ ⊗Z Q) = 0.

�

Note that if the commutator subgroup G′ is either perfect (i.e. G′ = G′′) or a torsion
group, then the Alexander polynomial of the irreducible curve C is trivial. In particular,
this is the case if G is abelian. The following examples deal with each of these cases.

Example 5.2. Let C̄ ⊂ CP2 be an irreducible curve of degree d which has a cusps (these are
locally defined by the equation x2 = y3) and b nodes as the only singularities. If d > 6a+2b,
then by a result of Nori (cf. [21], but see also [14]), it follows that π1(CP2 − C̄) is abelian.
If we choose a generic line H ‘at infinity’ and set C = C̄ −H, then as in 3.5 it follows that
π1(C2 − C) is also abelian. Hence all higher-order degrees of C vanish.

Proposition 5.3. Let C̄ ⊂ CP2 be a degree d irreducible cuspidal curve, i.e. it admits as
singularities only nodes and cusps. Choose a generic line H ⊂ CP2, and set C := C̄ − H
and G = π1(C2 − C). If d 6≡ 0 (mod 6), then all higher-order degrees of C vanish.

Proof. This follows from Proposition 5.1 combined with Libgober’s divisibility results for the
Alexander polynomial of a curve complement (see for instance [13], Theorem 4.1). Indeed,
the Alexander polynomial of a cusp is t2 − t + 1, that of a node is t − 1, and we use the
fact that the Alexander polynomial of an irreducible curve C can be normalized so that
∆C(1) = 1. Moreover, by our assumption of transversality at infinity, all zeros of ∆C(t) are
roots of unity of order d. �

Here is a more concrete example:

Example 5.4. Zariski’s three-cuspidal quartic.
Let C̄ ⊂ CP2 be a quartic curve with three cusps as its only singularities. Choose as

above a generic line H, and set C = C̄ − H. Then the fundamental group of the affine
complement is given by:

G = π1(C2 − C) = 〈a, b | aba = bab, a2 = b2〉.
It is easy to see (using for example a Redemeister-Shreier process, see [18]) that G′ ∼= Z/3Z.
It follows by Proposition 5.1 that δn(C) = 0, for all n. Moreover, the integral higher
Alexander modules are given by: AZ

n(C) = Z/3Z, for all n.

Remark 5.5. If C̄ ⊂ CP2 is an irreducible quartic curve, but not a three-cuspidal quartic,
then the fundamental group π1(CP2 − C̄) is abelian (cf. [4], Proposition 4.3). If H is a
generic line, and C = C̄ − H, then by [23], Lemma 2, it follows that π1(C2 − C) is also
abelian. Thus all higher-order degrees of such a curve vanish. Based on this observation
and the previous example, it follows that the higher-order degrees of any irreducible quartic
curve are all zero.
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In what follows, we give examples of curves having (some) non-trivial higher-order degrees.
The key observation in these examples is the fact that the higher-order degrees of an affine
curve are invariants of the fundamental group of the complement, see (3.1).

Example 5.6. Sextics with six cusps.
(a) Let C̄ ⊂ CP2 be a curve of degree 6 with 6 cusps on a conic. Fix a generic line, H,

and set C = C̄−H. Then π1(C2−C) = π1(CP2− C̄ ∪H) is isomorphic to the fundamental
group of the trefoil knot, and has Alexander polynomial t2− t+1 (see [10], §7). By Remark
3.12, the higher-order degrees of C are the same as Cochran-Harvey higher-order degrees
for the trefoil knot, i.e. δ0(C) = 2, and δn(C) = 1 for all n > 0.

(b) Let C̄ ⊂ CP2 be a curve of degree 6 with 6 cusps as its only singular points, but
this time we assume that the six cusps are not on a conic. Then π1(CP2 − C̄) is abelian,
(isomorphic to Z2 × Z3). Assuming the line H as above is generic and setting C = C̄ −H,
this implies that π1(C2 − C) is abelian as well. Therefore, δn(C) = 0 for all n ≥ 0.

From (a) and (b) we see that the higher-order degrees of a curve, at any level n, are also
sensitive to the position of singular points. An interesting open problem is to find Zariski
pairs that are distinguished by some δk, but not distinguished by any δn for n < k.

Example 5.7. Oka’s curves.
M. Oka [22] has constructed the curves C̄p,q ⊂ CP2 (p, q - relatively prime), with pq

singular points locally defined by

xp + yq = 0,

such that π1(CP2 − C̄p,q) = Zp ∗ Zq. In fact, the curve C̄p,q is defined by the equation:

(xp + yp)q + (yq + zq)p = 0.

Fix a generic lineH ⊂ CP2, and set Cp,q = C̄p,q−H. Then π1(C2−Cp,q) = π1(CP2−C̄p,q∪H)
is isomorphic to the fundamental group of the torus knot of type (p, q). The associated
Alexander polynomial is (see for instance [10], §7):

∆(t) =
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
.

By Remark 3.12 and Proposition 3.10, we obtain: δ0(Cp,q) = deg∆(t) = (p− 1)(q − 1), and
δn(Cp,q) = pq − p− q for all n > 0.

Example 5.8. Branching curves of generic projections. Braid groups.
Let Vk be a degree k non-singular surface in CP3 and α : Vk → CP2 be a generic projection.

If C̄k ⊂ CP2 denotes the branching locus of α, then C̄k is an irreducible curve of degree
k(k − 1) with k(k − 1)(k − 2)(k − 3)/2 nodes and k(k − 1)(k − 2) cusps. In the case k = 3,
one obtains as branching locus the six-cuspidal sextic with all cusps on a conic.

If Ck is the affine curve obtained from C̄k by removing the intersection with a generic line,
then Moishezon [20] showed that π1(C2 −Ck) is Artin’s braid group on k strands, Bk. The
Reidemeister-Schreier process [18] leads to the explicit computation of B′

k/B
′′
k . For k ≥ 5,

B′
k/B

′′
k = 0, hence Ck has a trivial Alexander polynomial. By Proposition 5.1 we obtain

that δn(Ck) = 0, for all n ≥ 0. For k = 3, B3 is the fundamental group of the trefoil knot,
so by Example 5.6(a) we obtain: δ0(C3) = 2 and δn(C3) = 1 for all n > 0.

The case k = 4 requires more work. Here we will only calculate δ0 and δ1 of the corre-
sponding curve C4. The Alexander polynomial of C4 is t2− t+1 (see for example [13]), thus
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δ0(C4) = 2. A presentation for the braid group on four strands is:

B4 = 〈σ1, σ2, σ3|σ1σ3 = σ3σ1, σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3 〉.

By using Reidemeister-Schreier techniques, we can obtain a presentation for B′
4. (This was

calculated in [7].)

B′
4 = 〈p, q, a, b, c|pap−1 = b, pbp−1 = b2c, qaq−1 = c, qbq−1 = c3a−1c, c = a−1b〉,

where p = σ2σ
−1
1 , q = σ1σ2σ

−2
1 , a = σ3σ

−1
1 , b = σ2σ

−1
1 σ3σ

−1
2 , and c = σ1σ2σ

−2
1 σ3σ1σ

−1
2 σ−1

1 .
Then, B′

4/B
′′
4
∼= Z ⊕ Z, generated by p and q. Notice that since B′

4/B
′′
4 is torsion-free,

(B4)
′′
r = B′′

4 . Hence by (3.1), we have:

δ1 = rkK1 (B′′
4/B

′′′
4 ⊗ZΓ̄1

K1) ,

where Γ̄1 = ker(ψ̄ : B4/B
′′
4 → B4/B

′
4) = B′

4/B
′′
4 . Therefore, we must understand B′′

4/B
′′′
4 as

a Z[p±1, q±1]-module, and then determine the rank as a Q(p, q)-vector space.
Again using Reidemeister-Schreier techniques, we calculate a group presentation for B′′

4 :

B′′
4 = 〈ρi,j, αi,j|ρi,0 = 1, ρi,jαi+1,jρ

−1
i,j = αi,jαi,j+1, ρi,jαi+1,j+1ρ

−1
i,j = αi,j (αi,j+1)

2 ,

αi,j+2 = (αi,j+1)
2 α−1

i,j αi,j+1〉,

where ρi,j = piqjpq−jp−(i+1) and αi,j = piqjaq−jp−i. Notice that p and q act on B′′
4 by

conjugation. Furthermore, p ∗ (q ∗ γ) = ρ−1
0,1(q ∗ (p ∗ γ))ρ0,1, for all γ ∈ B′′

4 . Hence although
the actions of p and q do not commute in B′′

4 , they do commute in B′′
4/B

′′′
4 . In particular,

B′′
4/B

′′′
4 is indeed a Z[p±1, q±1]-module.

We have the following presentation for B′′
4/B

′′′
4 as an abelian group:

B′′
4/B

′′′
4 = 〈ρi,j, αi,j|ρi,0 = 0, αi+1,j = αi,j+αi,j+1, αi+1,j+1 = αi,j+2αi,j+1, αi,j+2 = 3αi,j+1−αi,j〉.

To get a presentation as a Z[p±1, q±1]-module, we note that:

ρi,j =

j∏
k=1

(piqj−k ∗ ρ0,1), for j ≥ 1,

ρi,j =

−j∏
k=1

(piqj−1+k ∗ ρ−1
0,1), for j ≤ −1,

ρi,0 = 0,

αi,j = piqj ∗ α0,0, for all i, j ∈ Z.

Therefore, as a Z[p±1, q±1]-module, B′′
4/B

′′′
4 is generated by ρ0,1 and α0,0. Furthermore, ρ0,1

generates a free submodule, while α0,0 generates a torsion submodule. Hence the rank as a
Q(p, q)-vector space is 1. Therefore, δ1(C4) = 1.

Note. The background material on the constructions mentioned in this example are
beautifully explained in Libgober’s papers [13] and [14]. In particular, the latter contains a
summary of Moishezon’s results [20].



16 CONSTANCE LEIDY AND LAURENTIU MAXIM

References

[1] Arapura, D., Geometry of cohomology support loci for local systems. I. J. Algebraic Geom.6(1997),
563–597.

[2] Cochran, T., Noncommutative knot theory, Algebraic & Geometric Topology, Volume 4 (2004), 347-398.
[3] Cochran, T., Orr, K., Teichner, P. Knot concordance, Whitney towers and L2-signatures, Annals of

Mathematics, 157 (2003), 433-519.
[4] Dimca, A., Singularities and Topology of Hypersurfaces, Universitext, Springer-Verlag, 1992.
[5] Dimca, A., Sheaves in Topology, Universitext, Springer-Verlag, 2004.
[6] Dimca, A., Maxim, L., Multivariable Alexander invariants of hypersurface complements, arXiv:

math.AT/0506324.
[7] Gorin, E., Lin, V., Algebraic equations with continuous coefficients, and certain questions of the alge-

braic theory of braids (Russian), Math. Sb. (N.S.) 78 (120), 1969, 579-610; English translation in Math.
USSR-Sb. 7 (1969), 569-596.

[8] Harvey, S., Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston
norm, Topology, Volume 44 (2005), Issue 5, 895-945.

[9] Harvey, S., Monotonicity of degrees of generalized Alexander polynomials of groups and 3-manifolds
arXiv:math.GT/0501190.

[10] Libgober, A., Alexander polynomials of plane algebraic curves and cyclic multiple planes, Duke Math.
J., 49(1982), 833-851

[11] Libgober, A., Homotopy groups of the complements to singular hypersurfaces, Bulletin of the AMS,
13(1), 1985.

[12] Libgober, A., Homotopy groups of the complements to singular hypersurfaces, II, Annals of Mathemat-
ics, 139(1994), 117-144.

[13] Libgober, A., Alexander invariants of plane algebraic curves, Singularities, Proc. Symp. Pure Math.,
Vol. 40(2), 1983, 135-143.

[14] Libgober, A., Fundamental groups of the complements to plane singular curves. Algebraic geometry,
Bowdoin, 1985 (Brunswick, Maine, 1985), 29-45, Proc. Sympos. Pure Math., 46, Part 2, Amer. Math.
Soc., Providence, RI, 1987.

[15] Libgober, A., Groups which cannot be realized as fundamental groups of the complements to hypersur-
faces in CN . Algebraic geometry and its applications (West Lafayette, IN, 1990), 203–207, Springer,
New York, 1994.

[16] Libgober, A., On the homology of finite abelian covers, Topology and its applications, 43 (1992) 157-
166.

[17] Libgober, A., Characteristic varieties of algebraic curves arXiv: math.AG/9801070, in: C.Ciliberto et
al.(eds), Applications of Algebraic Geometry to Coding Theory, Physics and Computation, 215-254,
Kluwer, 2001.

[18] Magnus, W., Karrass, A., Solitar, D., Combinatorial group theory: Presentations of groups in terms of
generators and relations, Dover Publications, Inc., New York, 1976. xii+444 pp.

[19] Maxim, L., Intersection homology and Alexander modules of hypersurface complements, Comm. Math.
Helv. (to appear).

[20] Moishezon, B., Stable branch curves and braid monodromies, Lecture Notes in Mathematics, vol. 862,
107-193.

[21] Nori, M., Zariskis conjecture and related problems. Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2,
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