1. Let X be the “comb space” defined as the subspace of \mathbb{R}^2 that is the union of $I \times \{0\}$, $\{0\} \times I$, and $\{\frac{1}{n}\} \times I$ for all $n = 1, 2, 3, \ldots$.

 (a) Show that X is contractible. That is, X deformation retracts to a point.

 (b) Show that X does not deformation retract to the point $(0, 1) \in X$.

2. Group the following into homotopy equivalence classes. No justification is needed.

 (a) S^1
 (b) $S^1 \vee S^1$
 (c) The cylinder, $S^1 \times I$
 (d) The Möbius band
 (e) The torus, $S^1 \times S^1$
 (f) The solid torus, $D^2 \times S^1$
 (g) The torus minus one point
 (h) The torus minus two points
 (i) The Klein bottle minus a point
 (j) The Möbius band minus a point
 (k) $\{\vec{x} \in \mathbb{R}^2 : \|\vec{x}\| > 1\}$
 (l) $\{\vec{x} \in \mathbb{R}^2 : \|\vec{x}\| \geq 1\}$
 (m) $\{\vec{x} \in \mathbb{R}^2 : \|\vec{x}\| < 1\}$
 (n) $S^1 \cup (\mathbb{R}_+ \times \{0\}) \subset \mathbb{R}^2$
 (o) $S^1 \cup (\mathbb{R}_+ \times \mathbb{R}) \subset \mathbb{R}^2$
 (p) $S^1 \cup (\mathbb{R} \times \{0\}) \subset \mathbb{R}^2$
 (q) \mathbb{R}^2 with the positive x-axis deleted
 (r) \mathbb{R}^3 with the z-axis deleted
 (s) \mathbb{R}^3 with the circle $\{x^2 + y^2 = 1, z = 0\}$ deleted
 (t) \mathbb{R}^3 with the z-axis and the circle $\{x^2 + y^2 = 1, z = 0\}$ deleted
 (u) S^3 with one circle deleted
 (v) S^3 with two linked circles deleted
 (w) S^3 with two unlinked circles deleted